无人机用于目标识别跟踪具有灵活便捷的优势,从高空俯瞰,视野也很广阔,但是如果飞行高度越高,就会造成视觉上地面目标变小的情况,这时候如果无人机所携带的摄像头像素不足,则容易跟丢目标。这个难点采用成都慧视光电的AI图像处理板可以有效解决。慧视AI目标跟踪基于我司开发的瑞芯微高性能AI图像处理板,搭配自研的目标识别、跟踪算法,将这一套整合植入吊舱中,就能够对特定目标进行锁定跟踪,即便是无人机飞行高度的变化,肉眼很难辨别目标时,也不会丢失跟踪目标。慧视光电能够根据需求定制AI目标识别模块。成都轨迹图像识别模块
激光反无设备的摄像头中加装了高性能的AI图像处理板,将设备部署在预定区域,AI图像处理板在算法的加持下,实现对禁飞区域空中目标的24小时不间断AI巡逻,能够快速发现、锁定、处置目标,在数秒内利用高能激光毁伤无人机目标。要想到达更加精细的识别目的,板卡的性能很关键,同时视频数据的质量同样重要。高帧频的相机能够捕捉更多画面细节,这样高性能图像处理板在进行AI识别处理时,就能够获取更多信息,识别的精度就会提升。像成都慧视开发的高性能高帧频图像处理板就考虑到了这一点,通过RK3588和FPGA接口的深度定制,轻松打破高帧频视频的输入输出,让板卡实现更精细的数据处理。成都工业级图像识别模块算法机器狗AI识别模块定制。
SpeedDP的出现则正好解决了这一问题,它是一个基于瑞芯微的深度学习算法开发平台,提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能。平台支持本地化服务器部署,高校、特殊单位等数据敏感的用户无需担心数据信息泄露的问题。高校等单位可以通过模型训练和模型评估等功能,打造一个符合需求的AI模型,来帮助进行海量的数据标注,这不仅将节约大量的数据标注时间,更重要的是能够帮助提升自身算法在RK3588图像处理板的检测识别能力。
传统的吊舱只能如上述那样工作,而要打造更加智能化的边海防无人机巡逻,则可以在光电吊舱中植入高性能的图像处理板,通过目标识别、检测算法的赋能,就能够让无人机实现目标识别检测、目标锁定跟踪等功能。为了进行有效结合,成都慧视开发了多块高性能的具备图像处理能力的光电吊舱。例如慧视VIZ-100T三轴三光目标定位吊舱,集10倍光学变倍可见光相机、640×512高分辨率红外相机、测程1.2km半导体激光测距机于一体,在边海防巡逻时能够昼夜成像工作。三轴高稳定精度平台框架能够有效保障画面的清晰稳定,并对目标点位的定位。吊舱内置我司自主开发的高性能AI图像处理板Viztra-HE030,该板卡采用瑞芯微旗舰级芯片RK3588,能够在算法的作用下实现高空目标识别检测、锁定跟踪人、车、船等目标,再通过和地面巡逻人员协调统一,就能够打造边海防的智能化体系。成都慧视定制的RK3588系列AI识别模块能够快速集成于无人机吊舱中。
例如是飞过来的杂物,还是闯入的人或者动物,如果摄像头能够智能识别,那么就可以实现上述目的。而要实现这样的功能,一个很简单的方法就是在传统摄像头的基础上植入高性能的AI图像处理板。图像处理板通过定制接口和摄像头连接,在目标识别算法的赋能下,就能够对摄像头获取的物体进行AI识别分类,从而对摄像头发出指令是否锁定跟踪目标,从而转动摄像头。成都慧视开发的Viztra-ME025图像处理板,是慧视光电采用瑞芯微RK3399pro芯片开发而成的高性能板卡,芯片基于双Cortex-A72+四Cortex-A53大小核CPU结构;CPU主频1.8GHz;高性能+强大的算力3.0TOPS,GPU采用Mali-T860MP4,支持1080P视频编解码、H.265硬解码。低空经济图像处理怎么选合适的板卡?成都自主识别图像识别模块系统
成都慧视可以定制USB接口的RK3588图像处理板。成都轨迹图像识别模块
经过算法的不断升级验证,Viztra-LE026图像处理板能够以30Hz的帧率跟踪像素为2*2的目标,能够识别**小像素为12*12的目标,整个延迟不高于100ms,识别精度能够大于85%。无人机作业,续航是使用者首要考虑的。Viztra-LE026的设计正是考虑了这项因素,首先重量上就不会给无人机增加过多负担,尺寸方面也无需过多空间,低于4W的功耗对于整个无人机的续航影响也是微乎其微。综合这些特点,可见Viztra-LE026图像处理板和无人机的完美契合,将是各领域打造智能无人机的得力助手。成都轨迹图像识别模块
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。